
The Online Grocery App

Grayson Holt

Kosi Uzodinma

Molly Orr

Monica Korfas

Wesley Nguyen

UML

UML → RM
ProductWarehouse(SKU, pName, Price, Category)

Store(StoreID, SName, City, Hours, Rating, Hiring)

Customer(ID, cfName, clName, ccity, username, password)

AddToCart(custID, SKU)

StoreSells(SKU, StoreID)

BCNF
A = SKU
B = pName
C = Price
D = Category
E = StoreID
F = SName
G = SCity
H = Hours
I = Rating
J = Hiring
K = custID
L = cfName
M = clName
N = ccity
O = username
P = password

R= ABCDEFGHIJKLMNOP

FD = { A->BCD,
 E->FGHIJ,
 K->LMNOP }

BCNF ABCDEFGHIJKLMNOP

ABCD AEFGHIJKLMNOP

EFGHIJ EAKLMNOP

KLMNOP AEK

A->BCD

E->FGHIJ

K->LMNOP

BCNF ABCDEFGHIJKLMNOP

ABCD AEFGHIJKLMNOP

EFGHIJ EAKLMNOP

KLMNOP AEK

A->BCD

E->FGHIJ

K->LMNOP

Forms
four
tables

3NF
Remove RHS Singletons

A->B E->I
A->C E->J
A->D K->L
E->F K->M
E->G K->N
E->H K->O

K->P

R= ABCDEFGHIJKLMNOP

FD = { A->BCD,
 E->FGHIJ,
 K->LMNOP }

3NF
Remove Extraneous Attributes &
Remove Redundant Functional Dependencies

A->B E->I
A->C E->J
A->D K->L
E->F K->M
E->G K->N
E->H K->O

K->P

Merge FD’s with same LHS

A->BCD
E->FGHIJ
K->LMNOP

3NF

Make Tables

R1 = ABCD
R2 = EFGHIJ
R3 = KLMNOP

No Subset Tables, so Check for
Losslessness
Must make R* to match all
attributes from every table

R1 = ABCD
R2 = EFGHIJ
R3 = KLMNOP
R* = AEK AEK is the

global key

Comparisons
● Our UML gives us 5 tables, BCNF and 3NF give us 4 tables.

● BCNF and 3NF gave us one table for what the store sells and what the customer is

adding to their shopping cart.

● We chose to follow the UML design when creating our tables, which separates

what the store sells and what the customer adds to their shopping cart into two

different tables.

● This was simply for clarity purposes and helped us organize our data more

effectively.

Schema

Inserts

List stores that sell all items in Customer

105’s “cart”

List purchase info of customer with ID 113

Queries
 List all stores in a customer’s city

 List stores that sell grapes

Architecture + Components
● Back-End: PostgreSQL, Node.js

● Front-End: HTML, CSS, AngularJS

● Security: Encrypted Passwords

